The LIP+ -Stability and Error Estimates for a Relaxation Scheme

نویسندگان

  • Hailiang Liu
  • Jinghua Wang
  • Gerald Warnecke
چکیده

We show the discrete lip+-stability for a relaxation scheme proposed by Jin and Xin [Comm. Pure Appl. Math., 48 (1995), pp. 235–277] to approximate convex conservation laws. Equipped with the lip+-stability we obtain global error estimates in the spaces W s,p for −1 ≤ s ≤ 1/p, 1 ≤ p ≤ ∞ and pointwise error estimates for the approximate solution obtained by the relaxation scheme. The proof uses the framework introduced by Nessyahu and Tadmor [SIAM J. Numer. Anal., 29 (1992), pp. 1505–1519]. We also show a maximum principle for the relaxation scheme when the initial data are in an equilibrium state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Error Estimates for Relaxation Approximations to Conservation Laws

We obtain sharp pointwise error estimates for relaxation approximation to scalar conservation laws with piecewise smooth solutions. We first prove that the first-order partial derivatives for the perturbation solutions are uniformly upper bounded (the so-called Lip+ stability). A one-sided interpolation inequality between classical L1 error estimates and Lip+ stability bounds enables us to conv...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

A Uniformly Third Order Accurate Scheme for Genuinely Nonlinear Conservation Laws

The entropy condition and the total variation boundedness of weak solutions of convex scalar conservation laws are enforced by Lip+-stability which the physical solutions satisfy. The first order Godunov and LaxFriedrichs schemes, and the second order Maxmod scheme are consistent with this Lip+-stability and are, therefore, entropy convergent. In this paper, a uniformly third order accurate sch...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

On Convergence of Minmod-Type Schemes

A class of non-oscillatory numerical methods for solving nonlinear scalar conservation laws in one space dimension is considered. This class of methods contains the classical Lax-Friedrichs and the second order Nessyahu-Tadmor scheme. In the case of linear flux, new l2 stability results and error estimates for the methods are proved. Numerical experiments confirm that these methods are one-side...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000